Enter Values
Quick Reference
- Higher Treynor = Better risk-adjusted returns
- Uses beta = Best for diversified portfolios
- All inputs should be annualized
- Compare portfolios over the same time period
Treynor Ratio Result
Formula Breakdown
Interpretation
Your portfolio earns 6.25 percentage points of excess return per unit of systematic risk. This is considered good risk-adjusted performance relative to market risk taken.
Rating Guide
These are general guidelines. For meaningful analysis, compare portfolios with similar objectives over the same time period.
| Negative | Below risk-free rate | |
| Poor | Minimal excess return | |
| Acceptable | Reasonable returns | |
| Good | Strong performance | |
| Very Good | Excellent returns | |
| Exceptional | Verify data accuracy |
Understanding the Treynor Ratio
What is the Treynor Ratio?
The Treynor ratio, developed by Jack Treynor (one of the developers of CAPM), measures the excess return per unit of systematic risk. Unlike the Sharpe ratio which uses total risk (standard deviation), the Treynor ratio uses only beta—the measure of systematic, non-diversifiable market risk.
In simple terms, the Treynor ratio answers: "How much excess return am I earning for each unit of market risk I'm exposed to?"
Treynor Ratio vs Sharpe Ratio
Both ratios measure risk-adjusted returns, but they differ in how they define risk:
- Sharpe Ratio: Uses total risk (standard deviation), which includes both systematic and unsystematic risk. Best for individual securities or undiversified portfolios.
- Treynor Ratio: Uses systematic risk (beta) only. Best for well-diversified portfolios where unsystematic risk has been eliminated.
Interpreting the Results
The Treynor ratio represents the percentage points of excess return earned per unit of beta:
- Higher is better: A portfolio with Treynor = 8% earns more per unit of systematic risk than one with Treynor = 5%
- Context matters: The market portfolio has a Treynor ratio equal to (Rm - Rf)—the equity risk premium (historically ~5-7%)
- Compare fairly: Only compare portfolios with similar investment objectives over the same time period
Limitations
While valuable, the Treynor ratio has limitations:
- Requires accurate beta: Beta estimates vary depending on time period and methodology
- Assumes diversification: Only meaningful for diversified portfolios
- Historical data: Beta is backward-looking and may not predict future systematic risk
- Can't compare negative betas: Results are difficult to interpret when beta is negative
Consider using the Treynor ratio alongside the Sharpe ratio and Beta calculator for a complete picture of risk-adjusted performance.
Frequently Asked Questions
Disclaimer
This calculator is for educational and informational purposes only. The Treynor ratio is a historical measure that uses past data and may not predict future performance. The rating thresholds are general guidelines, not fixed industry standards. Investment decisions should consider multiple factors beyond risk-adjusted returns. Always consult with a qualified financial advisor before making investment decisions.